手机浏览器扫描二维码访问
在卷积层的内部包含着多个卷积核,而组成卷积核的每个元素都对应一个权重系数和一个偏差量,这就类似于一个前馈神经网络的神经元了。
<divclass='gad2'> 这样一来卷积层内的每个神经元都与前一层中位置接近的区域内多个神经元相连,区域的大小取决于卷积核的大小,这就是一种“感受野”
,可以类比为咱们人类的视觉皮层细胞的感受野。
卷积核在工作时,会有规律地扫过输入特征,因此在感受野内对输入特征可以做一个矩阵元素乘法求和并叠加偏差量——
因此我们可以列出一个线性卷积公式:y(n)=x(n)*h(n)=∞∑k=-∞x(k)h(n-k)。
当卷积核是大小f=1,步长S0=1,且不包含填充的单位卷积核时,卷积层内的交叉相关计算等价于矩阵乘法,并由此在卷积层间构建了一个全连接网络......”
徐诺一本正经科普的样子,像极了大学里在专注上课的教授。
而张朝闻人都已经傻了。
他就这么怔怔的愣在那里。
心想徐导你要不要看看你都在讲些什么?
影视TOP直播间里,网友们也都彻底傻眼了,弹幕“?????”
已经刷屏。
“作为一名人工智能专业的学生,听徐导讲卷积神经网络,仿佛回到了大学课堂。”
“其实像徐导刚才说的叠加偏差量,这样做是在增加求解步骤的同时并不能为求解参数取得便利。”
“阿巴阿巴???”
“我哩个乖乖,这徐导一看就是专业选手啊!”
“卧槽,我人都听傻了,徐导以前是研究人工智能的吗?”
“人工智能专业刚毕业的我给大家简单解释一下,徐导说的意思大概就是,卷积神经网络算法,能够让计算机拥有类似于人的视知觉,也就是图像识别、语音识别、机器翻译这样的深度学习。”
“之前比较火的AI绘画懂吧,就是一种计算机的深度学习模型。”
......
影视TOP的直播间里,还是有一小戳比较懂人工智能领域相关技术的专业人士的。
他们在听到徐诺的这些科普时,就会感觉非常亲切。
甚至他们还帮着徐诺给直播间的其他一脸懵逼的观众们进行更直观的解释。
而此时远在海城,正在看直播的科幻作家马勇,顿时心头一紧,大感不妙,坏了,这个徐诺,他好像对AI是真的很懂。
下一秒,马勇便立刻掏出手机点开微博,将自己先前发的那条内涵徐诺的微博光速删除。
嘿嘿,只要我删微博的速度足够快。
打脸他就追不上我!
前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...
专栏古耽预收微臣诚惶诚恐求个收藏容棠看过一本书。书里的反派宿怀璟是天之骄子,美强惨的典型代表,复仇升级流高智商反派人设,可惜人物崩坏,不得善终。结果一朝穿越,容棠成了文中同名同姓早死的病秧...
妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...
他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...
林风因意外负伤从大学退学回村,当欺辱他的地痞从城里带回来一个漂亮女友羞辱他以后,林风竟在村里小河意外得到了古老传承,无相诀。自此以后,且看林风嬉戏花丛,逍遥都市!...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...